Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.227
Filtrar
1.
J Virol ; : e0006024, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557170

RESUMO

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.

2.
J Ethnopharmacol ; : 118102, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561057

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.

3.
Eur Heart J Open ; 4(2): oeae021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38572088

RESUMO

Aims: The prevalence of atrial fibrillation (AF) is positively correlated with prior cardiovascular diseases (CVD) and CVD risk factors but is lower in Chinese than Europeans despite their higher burden of CVD. We examined the prevalence and prognosis of AF and other electrocardiogram (ECG) abnormalities in the China Kadoorie Biobank. Methods and results: A random sample of 25 239 adults (mean age 59.5 years, 62% women) had a 12-lead ECG recorded and interpreted using a Mortara VERITAS™ algorithm in 2013-14. Participants were followed up for 5 years for incident stroke, ischaemic heart disease, heart failure (HF), and all CVD, overall and by CHA2DS2-VASc scores, age, sex, and area. Overall, 1.2% had AF, 13.6% had left ventricular hypertrophy (LVH), and 28.1% had ischaemia (two-thirds of AF cases also had ischaemia or LVH). The prevalence of AF increased with age, prior CVD, and levels of CHA2DS2-VASc scores (0.5%, 1.3%, 2.1%, 2.9%, and 4.4% for scores <2, 2, 3, 4, and ≥5, respectively). Atrial fibrillation was associated with two-fold higher hazard ratios (HR) for CVD (2.15; 95% CI, 1.71-2.69) and stroke (1.88; 1.44-2.47) and a four-fold higher HR for HF (3.79; 2.21-6.49). The 5-year cumulative incidence of CVD was comparable for AF, prior CVD, and CHA2DS2-VASc scores ≥ 2 (36.7% vs. 36.2% vs. 37.7%, respectively) but was two-fold greater than for ischaemia (19.4%), LVH (18.0%), or normal ECG (14.1%), respectively. Conclusion: The findings highlight the importance of screening for AF together with estimation of CHA2DS2-VASc scores for prevention of CVD in Chinese adults.

4.
J Agric Food Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598771

RESUMO

Intramuscular fat (IMF) plays a crucial role in enhancing meat quality, enriching meat flavor, and overall improving palatability. In this study, Single-cell RNA sequencing was employed to analyze the longissimus dorsi (LD) obtained from Guangdong small-ear spotted pigs (GDSS, with high IMF) and Yorkshire pigs (YK, with low IMF). GDSS had significantly more Fibro/Adipogenic Progenitor (FAPs), in which the CD9 negative FAPs (FAPCD9-) having adipogenic potential, as demonstrated by in vitro assays using cells originated from mouse muscle. On the other hand, Yorkshire had more fibro-inflammatory progenitors (FIPs, marked with FAPCD9+), presenting higher expression of the FBN1-Integrin α5ß1. FBN1-Integrin α5ß1 could inhibit insulin signaling in FAPCD9-, suppressing adipogenic differentiation. Our results demonstrated that fat-type pigs possess a greater number of FAPCD9-, which are the exclusive cells in muscle capable of differentiating into adipocytes. Moreover, lean-type pigs exhibit higher expression of FBN1-Integrin α5ß1 axis, which inhibits adipocyte differentiation. These results appropriately explain the observed higher IMF content in fat-type pigs.

5.
Asian J Pharm Sci ; 19(2): 100891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584690

RESUMO

Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvß3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.

6.
Int J Biol Macromol ; 267(Pt 1): 131417, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582457

RESUMO

Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes. Editing BMP15 impaired the IVM of porcine oocytes, as indicated by the significantly increased abnormal spindle assembly and reduced first polar body (PB1) extrusion. The editing also impaired cytoplasmic maturation of porcine oocytes, as reflected by reduced abundant of Golgi apparatus and impaired functions of mitochondria. The impaired IVM of porcine oocytes by editing BMP15 possibly was associated with the attenuated SMAD1/5 and EGFR-ERK1/2 signaling in the cumulus granulosa cells (CGCs) and the inhibited MOS/ERK1/2 signaling in oocytes. The attenuated MOS/ERK1/2 signaling may contribute to the inactivation of maturation promoting factor (MPF) and the increased abnormal spindle assembly, leading to reduced PB1 extrusion. It also may contribute to reduced Golgi apparatus formation, and impaired functions of mitochondria. These findings expand our understanding of the regulatory role of BMP15 in the IVM of porcine oocytes and provide a basis for manipulation of porcine reproductive performance.

7.
Cell Commun Signal ; 22(1): 222, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594767

RESUMO

Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.


Assuntos
Ascomicetos , Virulência , Proteínas , Ubiquitinação , Autofagia
8.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620034

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Suínos , Farnesiltranstransferase/metabolismo , Proteínas Virais/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Transdução de Sinais
9.
Nurs Crit Care ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639246

RESUMO

BACKGROUND: Pneumonia has a high incidence in traumatic brain injury (TBI) patients and lacks effective treatments. Early mobilization (EM) may be a potentially effective treatment. AIM: To explore the impact of EM on TBI-related pneumonia in the neurosurgical intensive care unit (NICU). METHOD: This study was a historical control study. 100 TBI patients who received EM intervention were prospectively included as the experimental group (EM cohort), and 250 TBI patients were retrospectively included as the control group. The propensity score matching (PSM) method was employed to balance baseline and minimize potential bias. The relationship between EM and TBI-related pneumonia was investigated by univariate and multivariate logistic regression, then further determined by subgroup analysis. The influence of other variables was excluded by interaction analyses. Finally, the effect of EM on the prognosis of TBI patients was analysed by comparing the Glasgow Coma Scale (GCS) and the hospital stay. RESULTS: After screening, 86 patients were included in the EM cohort and 199 patients were included in the control cohort. There were obvious differences between the two cohorts at baseline, and these differences were eliminated after PSM, when the incidence of pneumonia was significantly lower in the EM cohort than in the control cohort (35.0% vs. 61.9%, p < .001). Multivariate logistic regression showed that EM was an independent risk factor for TBI-related pneumonia and was significantly associated with a decreased incidence of pneumonia. This correlation was present in most subgroups and was not affected by other variables (p for interaction >.05). Patients in the EM cohort had shorter length of ICU stay (6 vs. 7 days, p = .017) and higher GCS at discharge (12 vs. 11, p = .010). CONCLUSION: EM is a safe and effective treatment for TBI patients in NICU, which can reduce the incidence of pneumonia, help to improve prognosis and shorten the length of ICU stay. RELEVANCE TO CLINICAL PRACTICE: Although the utilization rate of EM is low in TBI patients for various reasons, EM is still an effective method to prevent complications. Our study confirms that a scientific and detailed EM strategy can effectively reduce the incidence of pneumonia while ensuring the safety of TBI patients, which is worthy of further research and clinical application.

10.
Theriogenology ; 222: 54-65, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621344

RESUMO

Coat colour largely determines the market demand for several cat breeds. The KIT proto-oncogene (KIT) gene is a key gene controlling melanoblast differentiation and melanogenesis. KIT mutations usually cause varied changes in coat colour in mammalian species. In this study, we used a pair of single-guide RNAs (sgRNAs) to delete exon 17 of KIT in somatic cells isolated from two different Chinese Li Hua feline foetuses. Edited cells were used as donor nuclei for somatic cell nuclear transfer (SCNT) to generate cloned embryos presenting an average cleavage rate exceeding 85%, and an average blastocyst formation rate exceeding 9.5%. 131 cloned embryos were transplanted into four surrogates, and all surrogates carried their pregnancies to term, and delivered 4.58% (6/131) alive cloned kittens, with 1.53% (2/131) being KIT-edited heterozygotes (KITD17/+). The KITD17/+ cats presented an obvious darkness reduction in the mackerel tabby coat. Immunohistochemical analysis (IHC) of skin tissues indicated impaired proliferation and differentiation of melanoblasts caused by the lack of exon17 in feline KIT. To our knowledge, this is the first report on coat colour modification of cats through gene editing. The findings could facilitate further understanding of the regulatory role of KIT on feline coat colour and provide a basis for the breeding of cats with commercially desired coat colour.

12.
Front Genet ; 15: 1242636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633407

RESUMO

Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-based disorders and malignancies, however it can also result in serious adverse events, such as the development of acute graft-versus-host disease (aGVHD). This study aimed to develop a donor-specific epigenetic classifier to reduce incidence of aGVHD by improving donor selection. Genome-wide DNA methylation was assessed in a discovery cohort of 288 HCT donors selected based on recipient aGVHD outcome; this cohort consisted of 144 cases with aGVHD grades III-IV and 144 controls with no aGVHD. We applied a machine learning algorithm to identify CpG sites predictive of aGVHD. Receiver operating characteristic (ROC) curve analysis of these sites resulted in a classifier with an encouraging area under the ROC curve (AUC) of 0.91. To test this classifier, we used an independent validation cohort (n = 288) selected using the same criteria as the discovery cohort. Attempts to validate the classifier failed with the AUC falling to 0.51. These results indicate that donor DNA methylation may not be a suitable predictor of aGVHD in an HCT setting involving unrelated donors, despite the initial promising results in the discovery cohort. Our work highlights the importance of independent validation of machine learning classifiers, particularly when developing classifiers intended for clinical use.

13.
Clin Transl Oncol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554191

RESUMO

BACKGROUND: The objective of this research was to investigate how the combination of semen coicis extract and PD-1 inhibitors can potentially work together to enhance the anti-tumor effects, with a focus on understanding the underlying mechanism. METHODS: We obtained the active components and specific targets of semen coicis in the treatment of NSCLC from various databases, namely TCMSP, GeneCard, and OMIM. By utilizing the STRING database and Cytoscape software, we established a protein interaction network (PPI) for the active ingredient of semen coicis and the target genes related to NSCLC. To explore the potential pathways involved, we conducted gene ontology (GO) and biological pathway (KEGG) enrichment analyses, which were further supported by molecular docking technology. Additionally, we conducted cyto-inhibition experiments to verify the inhibitory effects of semen coicis alone or in combination with a PD-1 inhibitor on A549 cells, along with examining the associated pathways. Furthermore, we investigated the synergistic mechanism of these two drugs through cytokine release experiments and the PD-L1 expression study on A549 cells. RESULTS: Semen coicis contains two main active components, Omaine and (S)-4-Nonanolide. Its primary targets include PIK3R1, PIK3CD, PIK3CA, AKT2, and mTOR. Molecular docking experiments confirmed that these ingredients and targets form stable bonds. In vitro experiments showed that semen coicis demonstrates inhibitory effects against A549 cells, and this effect was further enhanced when combined with PD-1 inhibitors. PCR and WB analysis confirmed that the inhibition of the PI3K-AKT-mTOR pathway may contribute to this effect. Additionally, semen coicis was observed to decrease the levels of IFN-γ, IL-6, and TNF-α, promoting the recovery of the human anti-tumor immune response. And semen coicis could inhibit the induced expression of PD­L1 of A549 cells stimulated by IFN­Î³ as well. CONCLUSION: Semen coicis not only has the ability to kill tumor cells directly but also alleviates the immunosuppression found in the tumor microenvironment. Additionally, it collaboratively enhances the effectiveness of PD-1 inhibitors against tumors by blocking the activation of PI3K-AKT-mTOR.

14.
Ther Adv Med Oncol ; 16: 17588359241236450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455710

RESUMO

Histological transformation is a phenomenon that is well described as one of the causes of tyrosine kinase inhibitor resistance in oncogene-driven non-small-cell lung cancer (NSCLC). The use of immune checkpoint inhibitors (ICIs) as a potential mechanism of acquired resistance to immunotherapy in NSCLC to small-cell lung cancer was also recently found. Here, we report the histological transformation of sarcomatoid carcinoma and metastasis in a lung adenocarcinoma patient without targetable genetic alterations who experienced long-term disease remission after nivolumab therapy. The patient subsequently developed rapid progression in the mediastinal and retroperitoneal lymph nodes, bones, and small intestine. Surgical resection of the small intestine lesion due to acute small intestine bleeding revealed the transformation of NSCLC to sarcomatoid carcinoma. The patient died 3 months after sarcomatoid carcinoma transformation and extensive disease progression, although he was rechallenged with immunotherapy. Genomic and immunohistochemical analyses revealed a comparable abundance of gene mutations and a limited number of immune cells in the tumor microenvironment, with low infiltration of CD8+ T cells, CD4+ T cells, regulatory T cells, and PD-L1+ macrophages in metastatic tumors, revealing a noninflamed immune microenvironment for ICI-resistant tumors.

15.
Phys Chem Chem Phys ; 26(14): 11037-11047, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526740

RESUMO

Electrochemical CO2 transformation to fuels and chemicals is an effective strategy for conversion of renewable electric energy into storable chemical energy in combination with reducing green-house gas emission. Metal-nitrogen-carbon (M-N-C) single atom catalysts (SAC) have shown great potential in the electrochemical CO2 reduction reaction (CO2RR). However, exploring advanced SACs with simultaneously high catalytic activity and high product selectivity remains a great challenge. In this study, density functional theory (DFT) calculations are combined with machine learning (ML) for rapid and high-throughput screening of high performance CO reduction catalysts. Firstly, the electrochemical properties of 99 M-N-C SACs were calculated by DFT and used as a database. By using different machine learning models with simple features, the investigated SACs were expanded from 99 to 297. Through several effective indicators of catalyst stability, inhibition of the hydrogen evolution reaction, and CO adsorption strength, 33 SACs were finally selected. The catalytic activity and selectivity of the remaining 33 SACs were explored by micro-kinetic simulation based on Marcus theory. Among all the studied SACs, Mn-NC2, Pt-NC2, and Au-NC2 deliver the best catalytic performance and can be used as potential catalysts for CO2/CO conversion to hydrocarbons with high energy density. This effective screening method using a machine learning algorithm can promote the exploration of CO2RR catalysts and significantly reduce the simulation cost.

16.
Neuropsychiatr Dis Treat ; 20: 571-582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496322

RESUMO

Purpose: Schizophrenia patients show impaired conditional reasoning. This study was to investigate event-related potential (ERP) characteristics of the conditional reasoning in schizophrenia. Patients and methods: Participants included 24 schizophrenia patients and 30 normal controls (NCs), and the measurements of ERPs were conducted during the Wason selection task. Results: Results showed that NCs consistently outperformed schizophrenia patients in terms of accuracy. Among the different rule types of the task, the precautionary type experiment yielded the highest accuracy rates. In contrast, both the descriptive and abstract type experiments resulted in lower accuracy. The RTs of the abstract type experiment were the shortest among the four experiments. In the abstract type of the Wason selection task, the NCs exhibited higher amplitudes for both the N1 and P2 components compared to the schizophrenia patients. At the parietal lobe, the N2 amplitudes were higher for the social contract type of the task compared to the precautionary version. At the frontal lobe, the N2 amplitudes were highest for the abstract type of the task. In the abstract type, the N2 amplitude at the parietal lobe was higher than that at the central lobe. The NCs displayed lower amplitudes for both the P3 and slow wave compared to the schizophrenia patients. Differences were observed between the NC and schizophrenia groups in terms of the latencies for N1, P2, N2, P3 and slow wave components across different experiment types and regions of interest. Conclusion: In conclusion, the observed ERP patterns provide valuable insights into the neural mechanisms underlying the Wason selection task, highlighting the differences between NCs and patients with schizophrenia.

17.
Pharmacol Res ; 202: 107123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432445

RESUMO

Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have significantly enhanced the treatment outcomes in non-small cell lung cancer (NSCLC) patients harboring EGFR mutations. However, the occurrence of acquired resistance to EGFR-TKIs is an unavoidable outcome observed in these patients. Disruption of the PI3K/AKT/mTOR signaling pathway can contribute to the emergence of resistance to EGFR TKIs in lung cancer. The emergence of PIK3CA mutations following treatment with EGFR-TKIs can lead to resistance against EGFR-TKIs. This review provides an overview of the current perspectives regarding the involvement of PI3K/AKT/mTOR signaling in the development of lung cancer. Furthermore, we outline the state-of-the-art therapeutic strategies targeting the PI3K/AKT/mTOR signaling pathway in lung cancer. We highlight the role of PIK3CA mutation as an acquired resistance mechanism against EGFR-TKIs in EGFR-mutant NSCLC. Crucially, we explore therapeutic strategies targeting PIK3CA-mediated resistance to EGFR TKIs in lung cancer, aiming to optimize the effectiveness of treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/genética , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética
18.
IEEE Trans Image Process ; 33: 2305-2317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470585

RESUMO

Online video streaming has fundamental limitations on the transmission bandwidth and computational capacity and super-resolution is a promising potential solution. However, applying existing video super-resolution methods to online streaming is non-trivial. Existing video codecs and streaming protocols (e.g., WebRTC) dynamically change the video quality both spatially and temporally, which leads to diverse and dynamic degradations. Furthermore, online streaming has a strict requirement for latency that most existing methods are less applicable. As a result, this paper focuses on the rarely exploited problem setting of online streaming video super resolution. To facilitate the research on this problem, a new benchmark dataset named LDV-WebRTC is constructed based on a real-world online streaming system. Leveraging the new benchmark dataset, we propose a novel method specifically for online video streaming, which contains a convolution and Look-Up Table (LUT) hybrid model to achieve better performance-latency trade-off. To tackle the changing degradations, we propose a mixture-of-expert-LUT module, where a set of LUT specialized in different degradations are built and adaptively combined to handle different degradations. Experiments show our method achieves 720P video SR around 100 FPS, while significantly outperforms existing LUT-based methods and offers competitive performance compared to efficient CNN-based methods. Code is available at https://github.com/quzefan/ConvLUT.

19.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543614

RESUMO

African swine fever virus (ASFV) and porcine reproductive and respiratory syndrome virus (PRRSV) infections lead to severe respiratory diseases in pigs, resulting in significant economic losses for the global swine industry. While numerous studies have focused on specific gene functions or pathway activities during infection, an investigation of shared immune responses in porcine alveolar macrophages (PAMs) after ASFV and PRRSV infections was lacking. In this study, we conducted a comparison using two single-cell transcriptomic datasets generated from PAMs under ASFV and PRRSV infection. Pattern recognition receptors (PRRs) RIG-I (DDX58), MDA5 (IFIH1), and LGP2 (DHX58) were identified as particularly recognizing ASFV and PRRSV, triggering cellular defense responses, including the upregulation of four cytokine families (CCL, CXCL, IL, and TNF) and the induction of pyroptosis. Through weighted gene co-expression network analysis and protein-protein interaction analysis, we identified thirteen gene and protein interactions shared by both scRNA-seq analyses, suggesting the ability to inhibit both ASFV and PRRSV viral replication. We discovered six proteins (PARP12, PARP14, HERC5, DDX60, RSAD2, and MNDA) in PAMs as inhibitors of ASFV and PRRSV replication. Collectively, our findings showed detailed characterizations of the immune responses in PAMs during ASFV and PRRSV infections, which may facilitate the treatments of these viral diseases.

20.
Exp Ther Med ; 27(4): 154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476925

RESUMO

Oxidative stress contributes to the pathology of cerebral ischemia/reperfusion (I/R) injury. Galectin-1 has shown an anti-oxidative stress effect. The present study investigated whether this anti-oxidative stress effect can account for the neuroprotective actions of galectin-1 induced by cerebral I/R injury. A cerebral I/R injury model was created in C57Bl/6 mice by transient occlusion of the middle cerebral artery, after which the mice were treated with galectin-1 for 3 days. Infarct volumes were measured. A rotarod test and neurological deficit score assessment was performed to evaluate the neurological deficits. Oxidative stress was evaluated by measuring the levels of reactive oxygen species (ROS) and lipid peroxidation malondialdehyde (MDA), while the anti-oxidative stress status was assessed by measuring molecules such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidation enzyme (GSH-Px) in the ischemic cerebral hemisphere of mice. The inflammatory cytokines, including Interleukin 1 (IL-1), IL-6 and tumor necrosis factor alpha (TNF-α) were measured, and the expression of microglia was evaluated by immunohistochemistry in the ischemic cerebral hemisphere of mice. Galectin-1 treatment ameliorated neurological deficits and reduced infarct volumes in the mice model with cerebral I/R injury. Moreover, it was demonstrated that galectin-1 can significantly alleviate cerebral I/R injury in the ischemic cerebral hemisphere by decreasing the production of ROS and MDA, but increasing the production of CAT, SOD and GSH-Px. Galectin-1 treatment decreased microglia expression, and IL-1, IL-6 and TNF-α levels in the ischemic cerebral hemisphere of mice. Galectin-1 could improve the outcome of cerebral I/R injury by alleviating oxidative stress. Moreover, the neuroprotective effect of galectin-1 in cerebral ischemia could be related to its anti-oxidative stress effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...